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Abstract

From the advent of general-purpose, Turing-complete machines, the relation
between operators, programmers, and users with computers can be seen in terms
of interconnected informational organisms (inforgs) henceforth analysed with the
method of levels of abstraction (LoAs), risen within the Philosophy of Informa-
tion (PI). In this paper, the epistemological levellism proposed by L. Floridi in the
PI to deal with LoAs will be formalised in constructive terms using category the-
ory, so that information itself is treated as structure-preserving functions instead of
Cartesian products. The milestones in the history of modern computing are then
analysed via constructive levellism to show how the growth of system complexity
lead to more and more information hiding.
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1 Introduction
In the recent debate among philosophers of computing, it emerges that there are sev-
eral formal theoretical concepts of information (Sommaruga, 2009). This is hardly
surprising, as “the marriage of physis and techne” (Floridi, 2010) became more and
more complex after the computational turn, whose historical origin can be traced back
in 1936, when Church, Turing and Post obtained the major results about computability
in their research about logic and the foundations of mathematics.

However, even if the universal Turing machine established the theoretical basis
of modern computing, the advent of the Von Neumann machine (VNM) provided a
real human-computer interaction: the more computing machineries became complex,
the more intricate became the relations between operators, programmers, and users.
During the last decades, physical layers of machines have been gradually replaced
by abstract computing devices—even computers themselves can be fully made virtual
nowadays, especially in the cloud computing paradigm. Philosophy of Information
(PI) is the framework in which we analyse these complex relations, following Floridi’s
major contributions—for recent comments and discussions, see Allo (2011) and Demir
(2012). In our approach, we borrow Floridi’s concept of ‘informational organism’ (in-
forg), while the proposed method is a variant of the epistemological levellism, i.e., the
philosophical view that investigates reality at different levels, where levels are defined
by observation or interpretation. This variant is based on a rigorous, multi-levelled
definition of information, where the levels are identified through the notion of abstrac-
tion (Floridi, 2011b, in particular, ch. 3), (Floridi, 2010, 2008), (Floridi and Sanders,
2004): the starting point considers numbers as symbols, thus providing an epistemolog-
ical level of abstraction. Moreover, the underlying principle aliquid (stat) pro aliquo,
something that stands for something else, can be carried on up to capture the complex-
ity of modern computing systems.

While this kind of non-reductionist approach seems to be the right one in dealing
with general inforgs, there are some practical disadvantages in using the method of lev-
els of abstraction (LoAs) as such with computational inforgs. A computational inforg
is an organism composed by (at least) a human being and by some kind of computing
machine. Most often, the computing part is made of a VNM or some evolution: al-
though other computational models beside Von Neumann’s exist, in this paper we will
limit ourselves to VNM-based computational inforgs, as this paradigm is by far the
most important in the history of modern computing.

Because computational inforgs are aliquid pro aliquo, the history of VNM-based
machines shows that the hiding of the computing technicalities to the human counter-
part of the inforg and the growth in complexity of the inforg itself, both in the human
and the machine sides, develop in pairs. For example, when the end-user types one or
more keywords in the web page of a search engine like Google, what he or she expects
as a response is a list of web pages related to the entered keywords, certainly not to
know how the search engine was programmed to obtain that output. Even in the case
of a computer programmer this fact holds: the programmer wants to obtain a sound
answer when running the program itself, independently from the hardware and the op-
erative system used to code his or her algorithms. So, in both cases of end-users and
programmers, some essential pieces of information are hidden, and this very fact is



what makes computer systems interesting for human beings, a fact already noticed by
Turing (1950) dealing with Lady Lovelace’s well-known objection.

So, a way to cope with the LoAs of computational inforgs in the case of hidden,
implicit information should still be found. The method is based on the notion of ob-
servables, i.e. interpreted typed variables together with the corresponding statements
of what features are under consideration; a LoA is the finite but non-empty set of
the observables (Floridi, 2011b, 48). There are some examples of application of the
method provided by Floridi, in particular: the study of some physical human attributes;
Gassendi’s objections to Descartes’ Meditations; the game of chess; the semiotics of
traffic lights in Rome and Oxford. None of these examples pertains to computational
inforgs, which in our view is a clear limit; moreover, in that foundational paper Floridi
declares that he “shall operate entirely within the boundaries of standard naı̈ve set the-
ory” (Floridi, 2011b, 50). In order to deal with computational inforgs and, in particular,
with the phenomenon of information hiding, it is useful to put the variables and LoAs
in a perspective that goes beyond set theory.

2 Abstraction within Constructive Levellism
Category theory (MacLane, 1998) can give a reasonably manageable and precise ac-
count of the growth in complexity of computational inforgs. The idea is to let informa-
tion be a domain, represented as a mathematical category, so that abstraction becomes
a map which preserves the inner structure of its domain, i.e., a functor in mathematical
terms, and, thus, the LoAs are distinguished by what kind of information gets hidden
to the human interacting with the machine.

If we adopt only methods and tools belonging to constructive mathematics, im-
plicit information can be explained alongside explicit one, without the risk of being
lost—at least to some extent. If we adopt a strict constructive attitude, for example
P. Martin Löf’s type theory as the reasoning framework, then we gain the ability to
access implicit information on request; on the contrary, if we stick on a less demand-
ing system, where choice principles are available, we may not have algorithmic access
to hidden/implicit information, even if present in the system. However, even within
less demanding systems, this fact does not imply that epistemological levellism can-
not be used constructively. In fact, there is a recent attempt to apply it into the more
general perspective of philosophical constructionism, which is a first step in this di-
rection (Floridi, 2011a). What is stated here is that constructive philosophy or con-
structivism—i.e., the use of constructive mathematics to present philosophy in general
and epistemology in particular—gives pragmatic advantages to the working philoso-
pher of information, because it permits to distinguish very clearly information from
knowledge, as rightly put by Primiero:

[. . . ] an epistemic distinction is needed among the notions of informa-
tion and knowledge, and that it is possible and moreover natural to obtain
it in a constructive framework. [. . . ] In all the relevant explanations of
the notions of knowledge and information, it has always been assumed
that knowledge is explicit, and information is usually conflated with the



content of knowledge. The relation of implicit/explicit containment is ob-
viously essential in the understanding of the relation between premises and
conclusion of an inference. [. . . ] By referring to judgemental knowledge,
it is instead possible to formulate implicit knowledge more clearly: [. . . ]
such an expression refers to what contained in an agent’s knowledge frame
every time something is explicitly asserted; this knowledge refers therefore
to the collection of assertions required (but not necessarily expressed) by
the meaningful assertion of a judgement (Primiero, 2008, 121).

The advantage of a constructive approach is that implicit knowledge is never lost but
hidden, see Sambin and Valentini (1995) for the technical aspects, as in construc-
tive mathematics the information content of statements is strictly preserved by proofs
(Bridges and Richman, 1987).

There is another crucial point in epistemological levellism, i.e., how LoAs are re-
lated. In other words, what is meant by abstraction. While preserving the possibility to
work in a purely constructive environment, category theory gives us a general and rig-
orous definition of abstraction1. We can understand how abstraction is treated within
category theory through a very simple example:

c1

id

��

i

  

F

xx·

id

��

α

DD c2 idff

o
~~

Foo

c3

id

XX

F

ff

Category A, on the left, has one object and two arrows: the identity (id) and α such that
α ◦α = α . Category C, on the right, has three objects and two arrows apart identities: i
and o. It is possible to map each object in C into the only object in A in such a way that
to every arrow in C corresponds an arrow in A, respecting identities and composition,
as shown by the dotted arrows.

In general, given two categories A and C, A is abstract with respect to C, while C is
concrete with respect to A, if there exists a functor F : C→ A. The key point is that the
mapping of the objects of C into A preserves all the existing relations (arrows) within
the source category, which is the meaning of F being a functor.

In the example it is evident that F is a functor, so A is abstract with respect to C,
and C is concrete with respect to A: in fact, A hides the details of C by mapping the
arrows i and o to α . If one thinks to C as the category representing the ‘black box’,
then A is a representation of the monolithic computational paradigm: the arrow α , the

1It is beyond the scope of this article to explain why category theory is very close to constructive reason-
ing: it suffices to say that the natural frameworks to reason are topoi, sorts of ‘complete’ categories, and each
topos comes equipped with an internal logic which is inherently constructive.



only relevant arrow of A, is the computational process, where the input, the processing,
and the output are hidden. The functor F maps the input to α , the output to α , and their
composition to α , which is the reason why α composed with itself must equal α . It is
relevant to notice that F allows for recovering the concrete level from the abstract one,
as the domain A is part of the definition of the functor. In traditional approaches, based
on set theory, abstraction is some formal relation between concrete and abstract objects:
in these approaches, arrows and a precise identification of domains and co-domains
are both forgotten, preventing a constructive development from the very beginning, as
pieces of information are, in principle, unrecoverable.

Actually, the category C is a faithful representation of the black box paradigm: the
objects of C represent states in time, ordered by their indexes—c1 is the initial state,
c2 represents the black box computing, while c3 represents the state where the result
is known. The arrows represent transitions: i feeds the black box with the input data,
while o extracts the output data from the black box. Usually, a functional approach is
preferred. As shown by Goldblatt (2006, 16), if we consider the input as the argument
of a function and the output as its value, the black box itself is conveniently denoted as
an arrow:

i black box // o

When we limit ourselves to describe black boxes as categories, no meaningful infor-
mation could be really found. In fact, in general, computing machineries are built with
human beings as their final users and what we want to model is the relation between
operators, programmers and users with computers, i.e., human-computer systems, or
rather interconnected inforgs in Floridi’s terms (Floridi, 2010, 2008). In this respect,
we are interested in modelling the flow of information among the parts of a system
rather than how computation is performed.

In the sequel of this paper, we address the modelling of computational inforgs start-
ing from the concept of computer as a generic tool to perform computation, either con-
crete or abstract. We will use category theory as a guideline to describe abstractions,
thus conserving in the abstraction functors hidden information, and we will proceed
historically, i.e., from the ancient calculating machines to cloud computing. The aim
is to find the minimal LoAs needed for modelling computing in different historical
moments: so, we will show how evolution of modern computers has been shaped by
abstraction, intended both as information hiding and the ability to recover the hidden
information on need.

3 Minimal Levels of Abstraction in Modern Comput-
ing

The modern era of computing was born in 1936, when Church, Post and Turing showed
the existence of universal machines, thus founding the future general-purpose comput-
ers on a solid theoretical basis. Later, calculation became the processing of a program,
represented as a number in input, applied to some data, denoted by another number
as input, eventually producing a number as the final result. The numbers are not nu-
merical quantities anymore: they denote (sequences of) symbols forming the program,



the input data and the final result. Here, an epistemological LoA can be found, as the
machine works on numbers, but the human beings using that machine think of those
numbers as programs and data, as the inner nature of a universal machine is to be
‘generic’. It is important to notice how the LoA is entirely on the human side of the
inforg, while the inner structure of the LoA is reflected on the corresponding Level of
Organisation (LoO) in the machinery part of the computational inforg—‘the system’
(Floridi, 2011b, 69). A LoO is a

structure in itself, or de re, which is allegedly captured and uncovered
by its description, and objectively formulated in some neutral observation
language (Floridi, 2011b, 69).

This view, inherited by classic AI (e.g., according to Newell’s and Simon’s views) is
acceptable within epistemological levellism when there is a perfect correspondence
between LoOs and LoAs. For instance, if an observer inspects the source code of a
program written in some programming language, the observer will realise that many
parts are deputed to facilitate this interpretation, i.e., type declarations, function proto-
types, etc., imposing an organisation to the program. Similarly, also data are organised
and their representation is highly structured. In other words, some LoOs have been
hierarchically built inside the machine so that each LoA can be externalised by a cor-
respondent LoO and, consequently, some information gets hidden. Hiding is only half
of this process, which is really abstraction: the other half is the ability to recover the
concrete representation from the data/program knowing the details of the abstraction.
This second part is fundamental to enable many activities related to programming, e.g.,
debugging.

A consequence of the widespread use of LoOs is that inforgs involving modern
computing start to become more complex: the general definition of information as data
+ meaning can be adequate only for the results of computation, but not for the whole
process of information generation performed by the inforg, i.e., the human-machine
system. In particular, programmability plays a crucial role, alongside computational
efficiency and evolutionary adaptability (Conrad, 1995).

The act of programming is the act of symbolically representing algorithms as num-
bers. Hence, it is inherently an abstraction, where information gets partially hidden.
The more inforgs grow, the more their pragmatic wills (from humans) and needs (to
the machines) grow, the more LoAs (on the human side) and LoOs (on the machine
side) should be found.

Figure 1 shows the model of the computational inforg of a VNM, from our general
point of view in terms of category theory. The human-side LoAs are put at the top
(with g indicating the goal), while the machine-side LoAs are put at the bottom (with
M indicating the machine). The goal g is obtained in two steps: p represents the
result of the act of programming, while data is encoded supposing the machine has
been appropriately programmed (M× p). Now, the data can be executed ((M× p)×
i→ o) to obtain the output o, which is observable (the dashed arrow) by the human-
side computational inforg. Meaning is then obtained by the interpretation from the
observation, e.g., at what degree the observer is surprised by the comparison between
the output o and the goal g, following Turing’s counter-objection to Lady Lovelace. Of
course, the goal g cannot and should not be reduced to a generic notion of epistemic
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Figure 1: The computing model behind Von Neumann’s architecture

surprise of the observer. However, it is out of the scope of this paper to investigate how
this epistemic surprise is made, as it pertains entirely and only to the human-side of the
inforg. Similarly, we do not discuss in this paper how computation is performed (the
arrow (M× p)× i→ o), or how data and program are represented inside the machine
(the arrows (M× p)× i→ i and M× p→ p, respectively). The diagram illustrates the
fundamental steps in the interaction between human and machinery, which necessarily
force a way to recover (the projection arrows π) the machine M, the program p and the
input i from the executable object (M× p)× i.

It is interesting to notice that we used products to model coupling of machine, pro-
gram and input data. In category theory, the product is a limit: it means that the product
is minimal among the objects which allows to recover all its components via its projec-
tions, the πs arrows: in less formal terms, it means that no further elements beside the
program, the machine and the input data are needed to perform the concrete computa-
tion; LoAs are responsible to provide the concrete elements to form the products from
the abstract elements available to the human side of the inforg.

In order to show how VNM-based inforgs grow in complexity with the insertion
of more and more levels of abstractions so to hide information, the next three sections
will highlight the main points in history where the levels were inserted so to find the
minimal number of needed levels.

4 From Operators to Operating Systems
The ENIAC and the other early computational machines, which are implementations
of the Von Neumann’s architecture, rely on human operators interacting with the ma-
chinery. These operators were responsible for coding the input i and for interpreting the
output o according to the goal g. Also, engineers first and programmers later—from the
1950s onward—were responsible to write the program p deputed to process the data.
Operators were not required to understand the internals of their computing machines,
while programmers had to do so, thus different roles, or inforgs in our terminology,
exist, each role with distinct competences. In particular, operators were expected to
interact with some hidden information provided by programmers.

As machines were expensive, and a number of highly trained people were needed



to operate them, both as programmers and as operators, there was a need to reduce the
amount of persons and, consequently, the costs. This was done by writing programs
to perform part of the duties of operators, a fact made possible by the birth of com-
pilers: historically, this was the start of the mechanisation process which lead to the
construction of the modern operating systems (Ceruzzi, 2003; Donovan, 1974).

Also, it was a waste of money to keep a machine idle when programmers and
operators were preparing an execution. So, operators started to prepare ‘jobs’ for the
machine, which were scheduled to execute one after the other with no pauses—it was
called ‘batch execution’. In this activity, they were assisted by the machine, which
was able to take a job from a queue, execute it, signal that the output was finished and
remove the job from the queue, restarting the execution cycle.

Soon, it was clear that machines were spending a large amount of time accessing
devices and disks (or other storage devices). This was perceived as inefficient, as the
machine as a whole was working, although all but one part of it were waiting. It would
have been much more interesting and economical to use all the parts of the machine
all the time to their maximum performance. So, special ‘job control languages’ were
devoted to describe the scheduling task and their masters were the operators. But it
was evident that operators, being human, were too slow to manage the interleaved
executions of many processes. Hence, the need for an appropriate program became
clear: its input was a series of jobs (pairs of programs and corresponding inputs), while
its output was the results of the executions of the jobs. This special program had to
find the optimal usage of the machine’s resources and devices and, at the same time, to
ensure that all the jobs were eventually executed. This kind of programs were the first
operating systems.

The modern concept of ‘operating system’ (Donovan, 1974) can be seen as a new
LoA: some tasks are hidden in an abstract machine operating on the computer system so
that humans can forget them instead of manually perform their task as living operators:
information gets hidden, without being lost. The hidden information is how to operate
devices and how to optimally schedule computational tasks.

The side effect of operating systems was that the user could think to processes as
being executed in parallel, as if each of them had a machine for its own purposes. Com-
puting machineries were fast enough to convey the impression of parallel executions,
even if no more than one process was really executed at any moment in time. These
systems were called multitasking systems.

If we want to model multitasking systems, we must recognise two different abstrac-
tions: in the first place, we have a single physical machine M ‘executing’ a number of
‘parallel’ jobs. This abstraction, that enables us to use the quotes in the previous sen-
tence, is the operating system. In the second place, each job is conceived to work inside
an environment where the machine is fully dedicated to its execution. Again, this abil-
ity to isolate jobs from undesired interactions is the result of the operating system’s
action. But these abstractions are essential to write correct programs: programmers
can safely assume to have the machine for their own purposes, without taking care of
the possible interactions with other programs.

The resulting model of computation is depicted in Figure 2: it looks complex be-
cause we have all the abstractions at work—it is possible to simplify the diagram by
cancelling arrows which can be obtained by composition, but they are useful in the fol-



g //

πk

&&

��

i = Π ji j

πk

��
gk

data encoding //

programming

��

ik ok
xx

p = Π j p j
πk // pk

Mk Mk× pk
π1oo

π2

OO

(Mk× pk)× ik
π1oo

π2

OO

execution

AA

Π jM j

πk

OO

Π j(M j× p j)
πoo

π

]]

πk

OO

Π j((M j× p j)× i j)
πoo

πk

OO

π

YY

execution // o

πk

OO

pp

M

π

OO

M× p
π1oo

π2

YY

π

OO

(M× p)× i
π1oo

π

OO

execution

88

π2

XX

Figure 2: The computing model behind multitasking architectures
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Figure 3: Multitasking: single process abstraction

lowing explanation. If we consider the top and the bottom lines, they form the physical
von Neumann’s inforg, as previously described. This inforg operates on the set of goals
g, inputs i and programs p, so to produce the output o.

In fact, if each goal is considered individually, focusing on just one of them, gk,
it produces the internal (Figure 3) Von Neumann’s inforg, which is the programmer’s
abstraction, that operates on the Mk ‘virtual machine’, eventually producing the ok
result. The ‘parallel execution’ of the set of jobs is the picture in the mind of the
operative system’s designer, see Figure 4: in fact, he is part of an inforg which can be
appropriately retrieved by composing projection arrows – i.e., the πs in the diagram.
As before, projections take care of hiding most of the work behind the scenes of the
operating system. Obviously, the concrete machine is still present, as the reader can
see in Figure 5, and it wraps the preceding abstractions via appropriate projections. In
this respect, it is interesting to notice that projections take care of ‘implementing’ the
relations among the various LoAs, an intuition we borrowed from Floridi.

In the diagrams, the dashed and double dotted arrows refer to interpretations—the
act of matching the output of a machine with the corresponding goal; dotted arrows
show the part of the multitasking system that are hidden in the considered inforg.
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Figure 4: Multitasking: operating system abstraction
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Figure 5: Multitasking: the concrete Von Neumann’s machine
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Figure 6: The computing model of cooperative multitasking

Part of the operator’s work, i.e., interpreting the output, is now responsibility of the
operating system, which takes care of automatically dividing the output according to
the process which produced it. This is an example of LoO.

Historically, soon after the development of the first multitasking operating systems,
processes were allowed to interact. This behaviour requires another level of abstraction,
which is the notion of application. This is best illustrated by an example: in Unix,
printing a document requires to invoke a command, lpr, which takes the document as
an argument. This program does not really print anything: it just prepares the document
for printing and put it on a queue; another process, lpd, periodically takes the document
on the top of the queue and prints it. This pair of commands forms an application: the
Unix printing system.

In our picture, applications are modelled by introducing another pair of LoAs in



the previous diagram—as done in Figure 6, which models groups of processes working
together as a unit, as if they were a unique program in a standing alone Von Neumann’s
architecture. In the example above, if we do not introduce process interaction, the
output of the process lpr (documents prepared for printing) could not be the input of
the process lpd (printing queue) and hence its output would be null, as nobody had
populated the queue, which is not what the user is expected to obtain by his goal, i.e.,
document printing.

Apart the complex technical appearance, it is worth remarking that the diagrams are
obtained as interleaved composition of Von Neumann’s architectures. For this reason,
we have shown with some details the multitasking example, the dotted arrows meaning
the hidden relations. The interested reader can do the same with Figure 6, which is
again a collection of abstract VNMs working together.

5 Internet and Distributed Applications
There is no doubt that Internet changed the way in which we perceive applications:
after the development of its infrastructure, the potential to write distributed applications
was at hand. In fact, most Internet structural services are distributed applications, e.g.,
the Domain Name Server (DNS) system is a distributed database to convert numerical
addresses into names and vice versa.

After the deployment of the World Wide Web (WWW) in the early 1990s, whose ar-
chitecture is a traditional client-server platform, not essentially different from a terminal-
mainframe system in the 1960s except for being distributed over the network, Internet
became almost a synonymous of the Web, at least in popular culture, a usage reinforced
in advertising (Berners-Lee and Fischietti, 2000).

As far as we are concerned, Internet applications are a natural evolution of a con-
current multitasking system, where the background is no more a single computing
machinery, but a network of intercommunicating computers. So, in abstract terms, the
architecture of the whole Internet can be depicted as in Figure 7. It is the same picture
as Figure 6, except that the bottom line2, the concrete implementing machine, has dis-
appeared. This behaviour is clear: the concrete level of Internet is the set of computers
which are interconnected, and they have not to be simulated, as we did in a multitasking
environment.

In fact, a single computer can simulate—at least in principle—the entire Internet.
This fact is due to the associative and commutative properties of the product, modulo
isomorphisms. Again, we see here the power of rigorous abstraction as a driving force
to system design.

6 The Era of End-Users
With the advent of window-based system, characterised by many applications inter-
actively working together at the same time, a change in the concurrent multitasking
schema take place: the outputs of several applications can be inspected at any time,

2Being commutative diagrams, we can safely omit arrows obtained by composition.
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concurrently. This fact introduces another LoA over the previous picture: the whole
output of an application is split: the external, visible part and the internal, hidden part.

An example may clarify: if we want to print a document on a Macintosh3, we
choose the ‘Print’ item in the ‘File’ menu; the application responds by showing a dialog
box asking the printing options we require, and then, after we confirm our choice, it
prints the document. As for Unix, the program which interacted with the user do not
actually print a document, but it sends it to a printing process which acts like lpd.
This process has an evident output, the printed document, but it may also show some
visible output to the user, like a progress bar. So, the user perceives the output of the
application, i.e., the set of processes deputed to treat the document, as coming from
a single ‘entity’. But some I/O takes places, since one process has to send input, the
document, to another process, which prints it. Thus, the output of an application has to
be divided into two parts: the internal one, the queued document which is of interest
to the programmer, and the external one, the progress bar and the printed document
which is what the user sees and wants.

Which kind of LoA is introduced here? From the point of view of system architec-
ture, there is no difference between typing Unix commands on a shell and point-and-
clicking menus and windows so to give the same command. The method of levels of
abstractions gives the necessary philosophical and theoretical framework to deal with
such cases. In particular, in the case of computing, each LoA is connected with a
different level of organisation (LoO), which pertains to the software and hardware ar-
chitecture, and a level of explanation (LoE), which pertains to the expected use by the
end-user vs. the programmer:

Strictly speaking, the LoEs do not really pertain to the system or its model.
They provide a way to distinguish between different epistemic approaches
and goals, such as when one analyses an exam question from the students’
or the teacher’s perspectives, or the description of the functions of a tech-
nological artifact from the designer’s, the user’s, the expert’s or the layper-
son’s point of view. A LoE is an important kind of LoA. It is pragmatic
and makes no pretence of reflecting an ultimate description of the system.
It has been defined with a specific practical view or use in mind. Manuals,
pitched at the inexpert user, indicating “how to” with no idea of “why”,
provide a good example (Floridi, 2011a, 69),

As a LoE has not a correspondent LoO, there is no proper LoA which should be inserted
in our model, unless we accept to structure the set of goals g, which is out of the scope
of this paper, as it strictly depends on the human-side behaviour, which does not do the
actual computation.4

Similar considerations can be brought for virtualisation, which is only a further stra-
tum of information hiding, which becomes a proper LoE. As already seen previously,
multitasking allows information hiding (Figures 3, 4, 5) letting us to model the per-
ceptions by the ideal programmers and application end-users. We can consider cloud

3Macintosh is a trademark of Apple Computer Inc.
4However, there are graphical representations of the users’ behaviours, notable Business Process Model

and Notation (BPMN), which try to catch this blurry area of inforgs (Ryan et al, 2009).



computing as a further complex of LoEs. In fact, there is no change of system archi-
tecture (LoO) with respect to the standard Internet model: the management of files and
applications (where to save? how to backup? when to update?) become invisible to
the LoE of the end-user, because the system deals with them. Here, abstraction over
the physical and logical devices takes care of hiding them to the users, but, at the same
time, they are under control within the system, so to make their resources available on
request. This fact stresses once more that abstractions must be constructive, that is,
information – e.g., a storage device – must be hidden to provide the correct service, but
it must be recoverable on request, to effectively implement the service itself.

Moreover, the gap between the programmer and the end-user becomes deeper: end-
users are asked to trust the clouding service providers about the ‘technicalities’, as
LoOs and LoAs are often commonly perceived, while programmers and system ad-
ministrators, the modern operators, are expected to keep the service alive without wor-
rying the end-users themselves. For an extensive application of the method of levels of
abstraction to cloud computing, see Wolf et al (2012).

7 Conclusion and further directions of work
What are the minimal LoAs needed to explain computers through history? During the
ancient era of computing, all LoAs were in the user’s mind, as the machine was only
an auxiliary tool: no symbolic interpretation was put into the device. This point was
the big change of the modern era, where the universal computing machinery started to
hide some symbolic interpretation of numbers through abstractions and organisations
in parallel, where each LoO is the externalisation of the correspondent LoA. The more
computers developed, the more information got hidden and needed reconstruction on
demand: to correctly explain this historical process, we proposed here a constructive-
based formalism.

The VNM is the first real inforg, as it pertains to machines and human beings
together, and hence it forms the first LoA. The main steps in the history of computing
may be seen as interleaving of VNMs, so that they form new LoAs: the next two LoAs
are the concept of operating system and the notion of application. When the output of
the application is split into a visible and an internal part, a fourth LoA should be added
providing interactive systems, whose ultimate version is the window-based interface.
It is interesting to notice, that this splitting permitted the fifth LoA, i.e., the distribution
of the application processes over a network of physical computers.

No more LoAs are needed to explain the evolution of computer systems up to now,
but at the same time the information hiding process caused by multitasking and the
notion of application gave raise to at least two different roles in using computers: pro-
grammers and end-users. If it is true that no further LoAs are needed, it is also true that
new LoEs are increasingly needed, especially to explain cloud computing.

In this paper, a special attention was given to the foundational part of computing,
i.e. the machinery. But computer science is not merely the history of computing ma-
chines. Rather, from at least the end of the 1960s an increasing role was given to soft-
ware (Ceruzzi, 2003), and since 2000 an increasing role is given to end-users, which
started to get conscious of their role forming communities of practice.



These two evident limits can be overcome in two possible elements of expansion.
First, a model in category theory can be developed to represent the relations between
algorithms, programs, and functions—that is, to deal with the LoAs lead by software.
In fact, there is a canonical forgetful functor from the category of programs to that of
algorithms5 and, analogously, from the category of computable functions to that of pro-
grams, but the functors from algorithms and functions to programs are far from being
canonical. This kind of arrows between categories should be studied carefully, im-
porting the results from many branches of Theoretical Computer Science into a unified
philosophical framework.

Second, the goals g can be captured, at least in part, if we accept to hide the details
behind the applications and try to define the behaviours of ideal programmers and end-
users through the software applications they actually use. How to hide it accordingly
is something that should be explored conveniently: this direction would develop the
LoEs, i.e., practical uses of computers, more than LoAs.

These two directions are left to the future of our research efforts.
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